Solution of a Simple Hypersingular Integral Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The numerical solution of a nonlinear hypersingular boundary integral equation

In this paper we consider a direct hypersingular integral approach to solve harmonic problems with nonlinear boundary conditions by using a practical variant of the Galerkin boundary element method. The proposed approach provides an almost optimal balance between the order of convergence and the numerical effort of work to compute the approximate solution. Numerical examples confirm the theoret...

متن کامل

Solution of a hypersingular integral equation in two disjoint intervals

A hypersingular integral equation in two disjoint intervals is solved by using the solution of Cauchy type singular integral equation in disjoint intervals. Also a direct function theoretic method is used to determine the solution of the same hypersingular integral equation in two disjoint intervals. Solutions by both the methods are in good agreement with each other.

متن کامل

A fast algorithm for solving nonlinear hypersingular integral equation

where 0 < ε < 1, and the unknown function g satisfies the boundary conditions g(±1) = 0. The integral has to be understood as the finite part of the strongly singular integral in the sense of Hadamard, who introduced this concept in relation to the Cauchy principal value. In fact, the toughness of brittle solids such as ceramics and cement-like materials can be increased considerably by the use...

متن کامل

Simple Error Estimators for the Galerkin BEM for some Hypersingular Integral Equation in 2D

A posteriori error estimation is an important tool for reliable and efficient Galerkin boundary element computations. For hypersingular integral equations in 2D with positive-order Sobolev space, we analyze the mathematical relation between the h − h/2error estimator from [18], the two-level error estimator from [22], and the averaging error estimator from [7]. All of these a posteriori error e...

متن کامل

Wavelet Based Numerical Solution of Second Kind Hypersingular Integral Equation1

A Legendre multiwavelet based method is developed in this paper to solve second kind hypersingular integral equation by converting it into a Cauchy singular integro-differential equation. Multiscale representation of the singular and differential operators is obtained by employing Legendre multiwavelet basis. An estimate of the error of the approximate solution of the integral equation is obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 2007

ISSN: 0897-3962

DOI: 10.1216/jiea/1192628619